Method for multimodal analysis of independent source differences in schizophrenia: combining gray matter structural and auditory oddball functional data.
نویسندگان
چکیده
The acquisition of both structural MRI (sMRI) and functional MRI (fMRI) data for a given study is a very common practice. However, these data are typically examined in separate analyses, rather than in a combined model. We propose a novel methodology to perform independent component analysis across image modalities, specifically, gray matter images and fMRI activation images as well as a joint histogram visualization technique. Joint independent component analysis (jICA) is used to decompose a matrix with a given row consisting of an fMRI activation image resulting from auditory oddball target stimuli and an sMRI gray matter segmentation image, collected from the same individual. We analyzed data collected on a group of schizophrenia patients and healthy controls using the jICA approach. Spatially independent joint-components are estimated and resulting components were further analyzed only if they showed a significant difference between patients and controls. The main finding was that group differences in bilateral parietal and frontal as well as posterior temporal regions in gray matter were associated with bilateral temporal regions activated by the auditory oddball target stimuli. A finding of less patient gray matter and less hemodynamic activity for target detection in these bilateral anterior temporal lobe regions was consistent with previous work. An unexpected corollary to this finding was that, in the regions showing the largest group differences, gray matter concentrations were larger in patients vs. controls, suggesting that more gray matter may be related to less functional connectivity in the auditory oddball fMRI task.
منابع مشابه
Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA+ joint ICA model
Diverse structural and functional brain alterations have been identified in both schizophrenia and bipolar disorder, but with variable replicability, significant overlap and often in limited number of subjects. In this paper, we aimed to clarify differences between bipolar disorder and schizophrenia by combining fMRI (collected during an auditory oddball task) and diffusion tensor imaging (DTI)...
متن کاملSchizophrenia Shows Disrupted Links between Brain Volume and Dynamic Functional Connectivity
Studies featuring multimodal neuroimaging data fusion for understanding brain function and structure, or disease characterization, leverage the partial information available in each of the modalities to reveal data variations not exhibited through the independent analyses. Similar to other complex syndromes, the characteristic brain abnormalities in schizophrenia may be better understood with t...
متن کاملCombining fMRI and SNP data to investigate connections between brain function and genetics using parallel ICA.
There is current interest in understanding genetic influences on both healthy and disordered brain function. We assessed brain function with functional magnetic resonance imaging (fMRI) data collected during an auditory oddball task--detecting an infrequent sound within a series of frequent sounds. Then, task-related imaging findings were utilized as potential intermediate phenotypes (endopheno...
متن کاملStructural Angle and Power Images Reveal Interrelated Gray and White Matter Abnormalities in Schizophrenia
We present a feature extraction method to emphasize the interrelationship between gray and white matter and identify tissue distribution abnormalities in schizophrenia. This approach utilizes novel features called structural phase and magnitude images. The phase image indicates the relative contribution of gray and white matter, and the magnitude image reflects the overall tissue concentration....
متن کاملAuditory oddball deficits in schizophrenia: an independent component analysis of the fMRI multisite function BIRN study.
Deficits in the connectivity between brain regions have been suggested to play a major role in the pathophysiology of schizophrenia. A functional magnetic resonance imaging (fMRI) analysis of schizophrenia was implemented using independent component analysis (ICA) to identify multiple temporally cohesive, spatially distributed regions of brain activity that represent functionally connected netw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human brain mapping
دوره 27 1 شماره
صفحات -
تاریخ انتشار 2006